Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139121

RESUMEN

Chronic heart failure is associated with reduced myocardial ß-adrenergic receptor expression and mitochondrial function. Since these data coincide with increased plasma catecholamine levels, we investigated the relation between myocardial ß-receptor expression and mitochondrial respiratory activity under conditions of physiological catecholamine concentrations. This post hoc analysis used material of a prospective randomized, controlled study on 12 sexually mature (age 20-24 weeks) Early Life Stress or control pigs (weaning at day 21 and 28-35 after birth, respectively) of either sex. Measurements in anesthetized, mechanically ventilated, and instrumented animals comprised serum catecholamine (liquid-chromatography/tandem-mass-spectrometry) and 8-isoprostane levels, whole blood superoxide anion concentrations (electron spin resonance), oxidative DNA strand breaks (tail moment in the "comet assay"), post mortem cardiac tissue mitochondrial respiration, and immunohistochemistry (ß2-adrenoreceptor, mitochondrial respiration complex, and nitrotyrosine expression). Catecholamine concentrations were inversely related to myocardial mitochondrial respiratory activity and ß2-adrenoceptor expression, whereas there was no relation to mitochondrial respiratory complex expression. Except for a significant, direct, non-linear relation between DNA damage and noradrenaline levels, catecholamine concentrations were unrelated to markers of oxidative stress. The present study suggests that physiological variations of the plasma catecholamine concentrations, e.g., due to physical and/or psychological stress, may affect cardiac ß2-adrenoceptor expression and mitochondrial respiration.


Asunto(s)
Catecolaminas , Respiración Artificial , Animales , Mitocondrias Cardíacas/metabolismo , Estudios Prospectivos , Receptores Adrenérgicos beta/metabolismo , Porcinos
3.
Sci Rep ; 13(1): 11230, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433815

RESUMEN

Realistic haptic feedback is a key for virtual reality applications in order to transition from solely procedural training to motor-skill training. Currently, haptic feedback is mostly used in low-force medical procedures in dentistry, laparoscopy, arthroscopy and alike. However, joint replacement procedures at hip, knee or shoulder, require the simulation of high-forces in order to enable motor-skill training. In this work a prototype of a haptic device capable of delivering double the force (35 N to 70 N) of state-of-the-art devices is used to examine the four most common haptic rendering methods (penalty-, impulse-, constraint-, rigid body-based haptic rendering) in three bimanual tasks (contact, rotation, uniaxial transition with increasing forces from 30 to 60 N) regarding their capabilities to provide a realistic haptic feedback. In order to provide baseline data, a worst-case scenario of a steel/steel interaction was chosen. The participants needed to compare a real steel/steel interaction with a simulated one. In order to substantiate our results, we replicated the study using the same study protocol and experimental setup at another laboratory. The results of the original study and the replication study deliver almost identical results. We found that certain investigated haptic rendering method are likely able to deliver a realistic sensation for bone-cartilage/steel contact but not for steel/steel contact. Whilst no clear best haptic rendering method emerged, penalty-based haptic rendering performed worst. For simulating high force bimanual tasks, we recommend a mixed implementation approach of using impulse-based haptic rendering for simulating contacts and combine it with constraint or rigid body-based haptic rendering for rotational and translational movements.


Asunto(s)
Artroplastia de Reemplazo , Interfaces Hápticas , Humanos , Tecnología Háptica , Artroscopía , Simulación por Computador
4.
Arch Psychiatr Nurs ; 44: 38-45, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37197861

RESUMEN

AIM: The aim of this study is to evaluate a brief positive psychological intervention with regard to the mental health of nursing staff in German hospitals. It addresses the question of how positive-psychological online exercises should be designed. BACKGROUND: Nurses in hospitals are known to suffer from mental strain and risk depressive as well as anxiety disorders. The covid-19-pandemic leads to a further aggravation of the situation. Opposed to that, positive psychological interventions can increase resilience by promoting self-management competences and mental strength. RESEARCH METHODS: A 90 min positive-psychological workshop was conducted with six nurses who worked in German hospitals. It consisted of imparting knowledge on positive psychology and learning different positive psychological practices. Afterwards, guideline-based interviews were conducted with six nurses. The outcomes of interest were how the intervention was evaluated, to what extent the intervention led to a reflection and a promotion of self-management competences and whether it allowed the participants to transfer the learnings into everyday life. RESULTS: The intervention led to a reflection of the application competence of positive-psychological techniques by the participating nurses. A promotion of the competences could not be reached. Especially the reflection and promotion of humour competence manifested itself as difficult. CONCLUSION: Despite its short-term nature, the online intervention resulted in a reflection of the nurses' application competence of positive psychology indicating its resource-promoting potential. Follow-up exercises or peer groups should be used for further development, while a training of humour competence might be part of a separate intervention.


Asunto(s)
COVID-19 , Intervención basada en la Internet , Personal de Enfermería , Humanos , Personal de Enfermería/psicología , Salud Mental , Aprendizaje
5.
Front Mol Biosci ; 10: 1113570, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138659

RESUMEN

Background: Early Life Stress (ELS) may exert long-lasting biological effects, e.g., on PBMC energy metabolism and mitochondrial respiration. Data on its effect on brain tissue mitochondrial respiration is scarce, and it is unclear whether blood cell mitochondrial activity mirrors that of brain tissue. This study investigated blood immune cell and brain tissue mitochondrial respiratory activity in a porcine ELS model. Methods: This prospective randomized, controlled, animal investigation comprised 12 German Large White swine of either sex, which were weaned at PND (postnatal day) 28-35 (control) or PND21 (ELS). At 20-24 weeks, animals were anesthetized, mechanically ventilated and surgically instrumented. We determined serum hormone, cytokine, and "brain injury marker" levels, superoxide anion (O2 •¯) formation and mitochondrial respiration in isolated immune cells and immediate post mortem frontal cortex brain tissue. Results: ELS animals presented with higher glucose levels, lower mean arterial pressure. Most determined serum factors did not differ. In male controls, TNFα and IL-10 levels were both higher than in female controls as well as, no matter the gender in ELS animals. MAP-2, GFAP, and NSE were also higher in male controls than in the other three groups. Neither PBMC routine respiration and brain tissue oxidative phosphorylation nor maximal electron transfer capacity in the uncoupled state (ETC) showed any difference between ELS and controls. There was no significant relation between brain tissue and PBMC, ETC, or brain tissue, ETC, and PBMC bioenergetic health index. Whole blood O2 •¯ concentrations and PBMC O2 •¯ production were comparable between groups. However, granulocyte O2 •¯ production after stimulation with E. coli was lower in the ELS group, and this effect was sex-specific: increased O2 •¯ production increased upon stimulation in all control animals, which was abolished in the female ELS swine. Conclusion: This study provides evidence that ELS i) may, gender-specifically, affect the immune response to general anesthesia as well as O2 •¯ radical production at sexual maturity, ii) has limited effects on brain and peripheral blood immune cell mitochondrial respiratory activity, and iii) mitochondrial respiratory activity of peripheral blood immune cells and brain tissue do not correlate.

6.
Pharmaceutics ; 15(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111788

RESUMEN

The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-ß3 (TGF-ß3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-ß3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-ß3. The amount of released TGF-ß3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-ß3 by loading higher concentrations to the implant, which led to the desired biological effect.

7.
Front Immunol ; 14: 1123196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114041

RESUMEN

Severe physical injuries and associated traumatic brain injury and/or hemorrhagic shock (HS) remain leading causes of death worldwide, aggravated by accompanying extensive inflammation. Retrospective clinical data indicated an association between mild hyperoxemia and improved survival and outcome. However, corresponding prospective clinical data, including long-term resuscutation, are scarce. Therefore, the present study explored the effect of mild hyperoxemia for 24 hours in a prospective randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma (ASDH) and HS. ASDH was induced by injecting 0.1 ml × kg-1 autologous blood into the subdural space and HS was triggered by passive removal of blood. After 2 hours, the animals received full resuscitation, including retransfusion of the shed blood and vasopressor support. During the first 24 hours, the animals underwent targeted hyperoxemia (PaO2 = 200 - 250 mmHg) or normoxemia (PaO2 = 80 - 120 mmHg) with a total observation period of 55 hours after the initiation of ASDH and HS. Survival, cardiocirculatory stability, and demand for vasopressor support were comparable between both groups. Likewise, humoral markers of brain injury and systemic inflammation were similar. Multimodal brain monitoring, including microdialysis and partial pressure of O2 in brain tissue, did not show significant differences either, despite a significantly better outcome regarding the modified Glasgow Coma Scale 24 hours after shock that favors hyperoxemia. In summary, the present study reports no deleterious and few beneficial effects of mild targeted hyperoxemia in a clinically relevant model of ASDH and HS with long-term resuscitation in otherwise healthy pigs. Further beneficial effects on neurological function were probably missed due to the high mortality in both experimental groups. The present study remains exploratory due to the unavailability of an a priori power calculation resulting from the lack of necessary data.


Asunto(s)
Hematoma Subdural Agudo , Choque Hemorrágico , Animales , Hematoma Subdural Agudo/terapia , Inflamación , Estudios Prospectivos , Estudios Retrospectivos , Choque Hemorrágico/terapia , Porcinos
8.
Front Immunol ; 14: 1125594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911662

RESUMEN

Introduction: Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods: After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results: PBMCs showed significantly higher mitochondrial O2 uptake and lower O 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion: In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected. O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.


Asunto(s)
Choque Hemorrágico , Animales , Porcinos , Choque Hemorrágico/metabolismo , Leucocitos Mononucleares/metabolismo , Teorema de Bayes , Hemorragia , Lípidos
9.
iScience ; 26(1): 105784, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590164

RESUMEN

THOC5, a member of the THO complex, is essential for the 3'processing of some inducible genes, the export of a subset of mRNAs and stem cell survival. Here we show that THOC5 depletion results in altered 3'cleavage of >50% of mRNAs and changes in RNA polymerase II binding across genes. THOC5 is recruited close to high-density polymerase II sites, suggesting that THOC5 is involved in transcriptional elongation. Indeed, measurement of elongation rates in vivo demonstrated decreased rates in THOC5-depleted cells. Furthermore, THOC5 is preferentially recruited to its target genes in slow polymerase II cells compared with fast polymerase II cells. Importantly chromatin-associated THOC5 interacts with CDK12 (a modulator of transcription elongation) and RNA helicases DDX5, DDX17, and THOC6 only in slow polymerase II cells. The CDK12/THOC5 interaction promotes CDK12 recruitment to R-loops in a THOC6-dependent manner. These data demonstrate a novel function of THOC5 in transcription elongation.

10.
Front Immunol ; 14: 1319986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38332911

RESUMEN

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results: 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.


Asunto(s)
Hematoma Subdural Agudo , Hiperoxia , Choque Hemorrágico , Animales , Porcinos , Glutamina/metabolismo , Ciclo del Ácido Cítrico , Análisis de Flujos Metabólicos/métodos , Superóxidos , Teorema de Bayes , Granulocitos/metabolismo , Oxígeno , Glucosa/metabolismo
11.
J Funct Biomater ; 13(4)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36278629

RESUMEN

Chronic tendon ruptures are common disorders in orthopedics. The conventional surgical methods used to treat them often require the support of implants. Due to the non-availability of suitable materials, 3D-printed polycaprolactone (PCL) scaffolds were designed from two different starting materials as suitable candidates for tendon-implant applications. For the characterization, mechanical testing was performed. To increase their biocompatibility, the PCL-scaffolds were plasma-treated and coated with fibronectin and collagen I. Cytocompatibility testing was performed using L929 mouse fibroblasts and human-bone-marrow-derived mesenchymal stem cells. The mechanical testing showed that the design adaptions enhanced the mechanical stability. Cell attachment was increased in the plasma-treated specimens compared to the control specimens, although not significantly, in the viability tests. Coating with fibronectin significantly increased the cellular viability compared to the untreated controls. Collagen I treatment showed an increasing trend. The desired cell alignment and spread between the pores of the construct was most prominent on the collagen-I-coated specimens. In conclusion, 3D-printed scaffolds are possible candidates for the development of tendon implants. Enhanced cytocompatibility was achieved through surface modifications. Although adaptions in mechanical strength still require alterations in order to be applied to human-tendon ruptures, we are optimistic that a suitable implant can be designed.

12.
Front Med (Lausanne) ; 9: 971882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072939

RESUMEN

Controversial evidence is available regarding suitable targets for the arterial O2 tension (PaO2) after traumatic brain injury and/or hemorrhagic shock (HS). We previously demonstrated that hyperoxia during resuscitation from hemorrhagic shock attenuated cardiac injury and renal dysfunction in swine with coronary artery disease. Therefore, this study investigated the impact of targeted hyperoxemia in a long-term, resuscitated model of combined acute subdural hematoma (ASDH)-induced brain injury and HS. The prospective randomized, controlled, resuscitated animal investigation consisted of 15 adult pigs. Combined ASDH plus HS was induced by injection of 0.1 ml/kg autologous blood into the subdural space followed by controlled passive removal of blood. Two hours later, resuscitation was initiated comprising re-transfusion of shed blood, fluids, continuous i.v. noradrenaline, and either hyperoxemia (target PaO2 200 - 250 mmHg) or normoxemia (target PaO2 80 - 120 mmHg) during the first 24 h of the total of 54 h of intensive care. Systemic hemodynamics, intracranial and cerebral perfusion pressures, parameters of brain microdialysis and blood biomarkers of brain injury did not significantly differ between the two groups. According to the experimental protocol, PaO2 was significantly higher in the hyperoxemia group at the end of the intervention period, i.e., at 24 h of resuscitation, which coincided with a higher brain tissue PO2. The latter persisted until the end of observation period. While neurological function as assessed using the veterinary Modified Glasgow Coma Score progressively deteriorated in the control group, it remained unaffected in the hyperoxemia animals, however, without significant intergroup difference. Survival times did not significantly differ in the hyperoxemia and control groups either. Despite being associated with higher brain tissue PO2 levels, which were sustained beyond the intervention period, targeted hyperoxemia exerted neither significantly beneficial nor deleterious effects after combined ASDH and HS in swine with pre-existing coronary artery disease. The unavailability of a power calculation and, thus, the limited number of animals included, are the limitations of the study.

13.
Front Immunol ; 13: 980707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172380

RESUMEN

Introduction: We previously showed that attenuated glucocorticoid receptor (GR) function in mice (GRdim/dim) aggravates systemic hypotension and impairs organ function during endotoxic shock. Hemorrhagic shock (HS) causes impaired organ perfusion, which leads to tissue hypoxia and inflammation with risk of organ failure. Lung co-morbidities like chronic obstructive pulmonary disease (COPD) can aggravate tissue hypoxia via alveolar hypoxia. The most common cause for COPD is cigarette smoke (CS) exposure. Therefore, we hypothesized that affecting GR function in mice (GRdim/dim) and pre-traumatic CS exposure would further impair hemodynamic stability and organ function after HS. Methods: After 3 weeks of CS exposure, anesthetized and mechanically ventilated GRdim/dim and GR+/+ mice underwent pressure-controlled HS for 1h via blood withdrawal (mean arterial pressure (MAP) 35mmHg), followed by 4h of resuscitation with re-transfusion of shed blood, colloid fluid infusion and, if necessary, continuous intravenous norepinephrine. Acid-base status and organ function were assessed together with metabolic pathways. Blood and organs were collected at the end of the experiment for analysis of cytokines, corticosterone level, and mitochondrial respiratory capacity. Data is presented as median and interquartile range. Results: Nor CS exposure neither attenuated GR function affected survival. Non-CS GRdim/dim mice had a higher need of norepinephrine to keep target hemodynamics compared to GR+/+ mice. In contrast, after CS exposure norepinephrine need did not differ significantly between GRdim/dim and GR+/+ mice. Non-CS GRdim/dim mice presented with a lower pH and increased blood lactate levels compared to GR+/+ mice, but not CS exposed mice. Also, higher plasma concentrations of some pro-inflammatory cytokines were observed in non-CS GRdim/dim compared to GR+/+ mice, but not in the CS group. With regards to metabolic measurements, CS exposure led to an increased lipolysis in GRdim/dim compared to GR+/+ mice, but not in non-CS exposed animals. Conclusion: Whether less metabolic acidosis or increased lipolysis is the reason or the consequence for the trend towards lower catecholamine need in CS exposed GRdim/dim mice warrants further investigation.


Asunto(s)
Fumar Cigarrillos , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Choque Hemorrágico , Animales , Catecolaminas , Corticosterona , Citocinas/metabolismo , Glucocorticoides , Hipoxia/complicaciones , Lactatos , Enfermedades Pulmonares/complicaciones , Ratones , Norepinefrina , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/complicaciones
14.
Shock ; 58(4): 332-340, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36018298

RESUMEN

ABSTRACT: Abdominal trauma (AT) is of major global importance, particularly because the civil, terroristic, and military traumatic potential of blast injuries has increased. The consequences of blunt abdominal injuries are highly variable and frequently underestimated or even overlooked. However, the underlying path mechanisms and subsequent innate immune response remain poorly understood. Therefore, we investigated the spatiotemporal local and systemic effects of a standardized blast-induced blunt AT on the intestine and innate immune response. In an established AT model, 66 male C57Bl6 mice were anesthetized and exposed to either a single blast wave centered on the epigastrium or control treatment (sham). At 2, 6, or 24 hours after trauma induction, animals were sacrificed. In 16 of 44 (36%) AT animals, one or more macroscopically visible injuries of the intestine were observed. Epithelial damage was detected by histological analysis of jejunum and ileum tissue samples, quantified by the Chiu score and by increased plasma concentrations of the intestinal fatty acid-binding protein, an enterocyte damage marker. Moreover, in the early posttraumatic period, elevated syndecan-1, claudin-5, and mucin-2 plasma levels also indicated alterations in the gut-blood barrier. Increased levels of pro-inflammatory cytokines such as TNF and macrophage inflammatory protein 2 in tissue homogenates and plasma indicate a systemic immune activation after blunt AT. In conclusion, we detected early morphological intestinal damage associated with high, early detectable intestinal fatty acid-binding protein plasma levels, and a considerable time- and dose-dependent impairment of the gut-blood barrier in a newly established mouse model of blunt AT. It appears to be a sufficient model for further studies of the intestinal immunopathophysiological consequences of AT and the evaluation of novel therapeutic approaches.


Asunto(s)
Traumatismos Abdominales , Heridas no Penetrantes , Animales , Masculino , Ratones , Quimiocina CXCL2 , Mucina 2 , Sindecano-1 , Claudina-5 , Ratones Endogámicos C57BL , Citocinas , Inmunidad Innata , Proteínas de Unión a Ácidos Grasos
15.
Front Med (Lausanne) ; 9: 925433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847799

RESUMEN

Background: The hydrogen sulfide (H2S) and the oxytocin/oxytocin receptor (OT/OTR) systems interact in the central nervous and cardiovascular system. As a consequence of osmotic balance stress, H2S stimulates OT release from the paraventricular nuclei (PVN) in the hypothalamic regulation of blood volume and pressure. Hemorrhagic shock (HS) represents one of the most pronounced acute changes in blood volume, which, moreover, may cause at least transient brain tissue hypoxia. Atherosclerosis is associated with reduced vascular expression of the main endogenous H2S producing enzyme cystathionine-γ-lyase (CSE), and, hence, exogenous H2S administration could be beneficial in these patients, in particular after HS. However, so far cerebral effects of systemic H2S administration are poorly understood. Having previously shown lung-protective effects of therapeutic Na2S2O3 administration in a clinically relevant, long-term, porcine model of HS and resuscitation we evaluated if these protective effects were extended to the brain. Methods: In this study, available unanalyzed paraffin embedded brain sections (Na2S2O3 N = 8 or vehicle N = 5) of our recently published HS study were analyzed via neuro-histopathology and immunohistochemistry for the endogenous H2S producing enzymes, OT, OTR, and markers for brain injury and oxidative stress (glial fibrillary acidic protein (GFAP) and nitrotyrosine). Results: Neuro-histopathological analysis revealed uninjured brain tissue with minor white matter edema. Protein quantification in the hypothalamic PVN showed no significant inter-group differences between vehicle or Na2S2O3 treatment. Conclusions: The endogenous H2S enzymes, OT/OTR co-localized in magnocellular neurons in the hypothalamus, which may reflect their interaction in response to HS-induced hypovolemia. The preserved blood brain barrier (BBB) may have resulted in impermeability for Na2S2O3 and no inter-group differences in the PVN. Nonetheless, our results do not preclude that Na2S2O3 could have a therapeutic benefit in the brain in an injury that disrupts the BBB, e.g., traumatic brain injury (TBI) or acute subdural hematoma (ASDH).

16.
Front Immunol ; 13: 901005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784322

RESUMEN

We previously demonstrated marked lung-protective properties of the H2S donor sodium thiosulfate (Na2S2O3, STS) in a blinded, randomized, controlled, long-term, resuscitated porcine model of swine with coronary artery disease, i.e., with decreased expression of the H2S-producing enzyme cystathionine-γ-lyase (CSE). We confirmed these beneficial effects of STS by attenuation of lung, liver and kidney injury in mice with genetic CSE deletion (CSE-ko) undergoing trauma-and-hemorrhage and subsequent intensive care-based resuscitation. However, we had previously also shown that any possible efficacy of a therapeutic intervention in shock states depends both on the severity of shock as well as on the presence or absence of chronic underlying co-morbidity. Therefore, this prospective, randomized, controlled, blinded experimental study investigated the effects of the STS in cardiovascular healthy swine. After anesthesia and surgical instrumentation, 17 adult Bretoncelles-Meishan-Willebrand pigs were subjected to 3 hours of hemorrhage by removal of 30% of the blood volume and titration of the mean arterial pressure (MAP) ≈ 40 ± 5 mmHg. Afterwards, the animals received standardized resuscitation including re-transfusion of shed blood, fluids, and, if needed, continuous i.v. noradrenaline to maintain MAP at pre-shock values. Animals were randomly allocated to either receive Na2S2O3 or vehicle control starting 2 hours after initiation of shock until 24 hours of resuscitation. The administration of Na2S2O3 did not alter survival during the observation period of 68 hours after the initiation of shock. No differences in cardio-circulatory functions were noted despite a significantly higher cardiac output, which coincided with significantly more pronounced lactic acidosis at 24 hours of resuscitation in the Na2S2O3 group. Parameters of liver, lung, and kidney function and injury were similar in both groups. However, urine output was significantly higher in the Na2S2O3 group at 24 hours of treatment. Taken together, this study reports no beneficial effect of Na2S2O3 in a clinically relevant model of hemorrhagic shock-and-resuscitation in animals without underlying chronic cardiovascular co-morbidity.


Asunto(s)
Choque Hemorrágico , Animales , Inflamación , Pulmón/metabolismo , Estudios Prospectivos , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/metabolismo , Porcinos , Tiosulfatos
17.
Front Med (Lausanne) ; 9: 878823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572988

RESUMEN

Background: Sodium thiosulfate (STS) is a recognized drug with antioxidant and H2S releasing properties. We recently showed that STS attenuated organ dysfunction and injury during resuscitation from trauma-and-hemorrhage in CSE-ko mice, confirming its previously described organ-protective and anti-inflammatory properties. The role of H2S in diabetes mellitus type 1 (DMT1) is controversial: genetic DMT1 impairs H2S biosynthesis, which has been referred to contribute to endothelial dysfunction and cardiomyopathy. In contrast, development and severity of hyperglycemia in streptozotocin(STZ)-induced DMT1 was attenuated in CSE-ko mice. Therefore, we tested the hypothesis whether STS would also exert organ-protective effects in CSE-ko mice with STZ-induced DMT1, similar to our findings in animals without underlying co-morbidity. Methods: Under short-term anesthesia with sevoflurane and analgesia with buprenorphine CSE-ko mice underwent DMT1-induction by single STZ injection (100 µg⋅g-1). Seven days later, animals underwent blast wave-induced blunt chest trauma and surgical instrumentation followed by 1 h of hemorrhagic shock (MAP 35 ± 5 mmHg). Resuscitation comprised re-transfusion of shed blood, lung-protective mechanical ventilation, fluid resuscitation and continuous i.v. norepinephrine together with either i.v. STS (0.45 mg⋅g-1) or vehicle (n = 9 in each group). Lung mechanics, hemodynamics, gas exchange, acid-base status, stable isotope-based metabolism, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, chemokines, and immunoblotting. Results: Diabetes mellitus type 1 was associated with more severe circulatory shock when compared to our previous study using the same experimental design in CSE-ko mice without co-morbidity. STS did not exert any beneficial therapeutic effect. Most of the parameters measured of the inflammatory response nor the tissue expression of marker proteins of the stress response were affected either. Conclusion: In contrast to our previous findings in CSE-ko mice without underlying co-morbidity, STS did not exert any beneficial therapeutic effect in mice with STZ-induced DMT1, possibly due to DMT1-related more severe circulatory shock. This result highlights the translational importance of both integrating standard ICU procedures and investigating underlying co-morbidity in animal models of shock research.

18.
ACS Biomater Sci Eng ; 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622002

RESUMEN

Temporally and spatially controlled growth factor release from a polycaprolactone fiber mat, which also provides a matrix for directional cell colonization and infiltration, could be a promising regenerative approach for degenerated tendon-bone junctions. For this purpose, polycaprolactone fiber mats were coated with tailored chitosan-based nanogels to bind and release the growth factors bone morphogenetic protein 2 (BMP-2) and transforming growth factor-ß3 (TGF-ß3), respectively. In this work we provide meaningful in vitro data for the understanding of the drug delivery performance and sterilizability of novel implant prototypes in order to lay the foundation for in vivo testing. ELISA-based in vitro release studies were used to investigate the spatial and temporal control of release, as well as the influence of radiation sterilization on protein activity and release behavior. Layer-by-layer coatings based on BMP-2-containing chitosan tripolyphosphate nanogel particles and negatively charged alginate showed a good sustainment of BMP-2 release from chemically modified polycaprolactone fiber mats. Release control improved with increasing layer numbers. The approach of controlling the release via a barrier of cross-linked chitosan azide proved less promising. By using a simple, partial immersion-based dip-coating process, it was possible to apply opposing gradients of the growth factors BMP-2 and TGF-ß3. Final radiation sterilization of the growth factor-loaded implant prototypes resulted in a radiation dose-correlated degradation of the growth factors, which could be prevented by lyophilization into protective matrices. For the manufacture of sterile implants, the growth factor loading step must probably be carried out under aseptic conditions. The layer-by-layer coated implant prototypes provided sustained release from opposing gradients of the growth factors BMP-2 and TGF-ß3 and thus represent a promising approach for the restoration of tendon-bone defects.

19.
Br J Anaesth ; 128(5): 864-873, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131096

RESUMEN

BACKGROUND: Calcitonin gene-related peptide (CGRP) and procalcitonin, which are overexpressed in sepsis, exert distinct immunomodulatory effects mediated through the CGRP receptor. The CGRP receptor antagonist olcegepant improves survival in murine sepsis. This study evaluated whether CGRP receptor antagonism is similarly beneficial in a porcine model of polymicrobial sepsis. METHODS: We conducted a prospective randomised, controlled, investigator-blinded trial in adult pigs of either sex, that were anaesthetised and ventilated before sepsis was induced by polymicrobial (autologous) faecal peritonitis. After the onset of early septic shock (systolic blood pressure <90 mm Hg or >10% decline from baseline MAP), pigs were resuscitated (i.v. fluid/antibiotics/vasopressors) and randomised to receive either i.v. olcegepant (n=8) or vehicle control (n=8). The primary outcome was time to death, euthanasia required up to 72 h after surgery (according to predefined severe cardiorespiratory failure), or both. Secondary outcomes included haemodynamic changes, and systemic as well as organ inflammation (mRNA expression). RESULTS: Septic shock developed 8.7 h (inter-quartile range, 5.8-11.1 h) after the onset of faecal peritonitis. Olcegepant worsened survival, with 6/8 pigs randomised to the control group surviving 72.0 h (50.9-72.0 h), compared with 3/8 pigs receiving olcegepant surviving 51.3 h (12.5-72.0 h; P=0.01). At 48 h, lower MAP and higher cardiac output occurred in pigs receiving olcegepant. Cardiac, hepatic, and renal injury was not different between pigs randomised to receive olcegepant or vehicle. Olcegepant reduced mRNA expression of several inflammation-related cytokines and CD68+ macrophages in liver but not in lung tissue. CONCLUSIONS: CGRP receptor antagonism with olcegepant was not beneficial in this porcine model of polymicrobial sepsis, which closely mimics human sepsis.


Asunto(s)
Peritonitis , Sepsis , Choque Séptico , Animales , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Humanos , Ratones , Peritonitis/tratamiento farmacológico , Estudios Prospectivos , ARN Mensajero , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Sepsis/tratamiento farmacológico , Choque Séptico/tratamiento farmacológico , Porcinos
20.
Shock ; 57(1): 131-139, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34172609

RESUMEN

BACKGROUND: Sodium thiosulfate (Na2S2O3) is a clinically established drug with antioxidant and sulphide-releasing properties. Na2S2O3 mediated neuro- and cardioprotective effects in ischemia/reperfusion models and anti-inflammatory effects in LPS-induced acute lung injury. Moreover, Na2S2O3 improved lung function during resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis, characterized by decreased expression of cystathionine γ-lyase (CSE), a major source of hydrogen sulfide (H2S) synthesis in the vasculature. Based on these findings, we investigated the effects of Na2S2O3 administration during resuscitation from trauma-and-hemorrhage in mice under conditions of whole body CSE deficit. METHODS: After blast wave-induced blunt chest trauma and surgical instrumentation, CSE knockout (CSE-/-) mice underwent 1 h of hemorrhagic shock (MAP 35 ±â€Š5 mm Hg). At the beginning of resuscitation comprising retransfusion, norepinephrine support and lung-protective mechanical ventilation, animals received either i.v. Na2S2O3 (0.45 mg g-1, n = 12) or vehicle (saline, n = 13). Hemodynamics, acid-base status, metabolism using stable isotopes, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, mitochondrial respiratory capacity, and immunoblotting. RESULTS: Na2S2O3 treatment improved arterial paO2 (P = 0.03) coinciding with higher lung tissue glucocorticoid receptor expression. Norepinephrine requirements were lower in the Na2S2O3 group (P < 0.05), which was associated with lower endogenous glucose production and higher urine output. Na2S2O3 significantly increased renal tissue IκBα and heme oxygenase-1 expression, whereas it lowered kidney IL-6 and MCP-1 levels. CONCLUSION: Na2S2O3 exerted beneficial effects during resuscitation of murine trauma-and-hemorrhage in CSE-/- mice, confirming and extending the previously described organ-protective and anti-inflammatory properties of Na2S2O3. The findings make Na2S2O3 a potentially promising therapeutic option in the context of impaired CSE activity and/or reduced endogenous H2S availability.


Asunto(s)
Antioxidantes/farmacología , Resucitación , Tiosulfatos/farmacología , Animales , Quimiocina CCL2/metabolismo , Cistationina gamma-Liasa/genética , Glucosa/metabolismo , Hemo-Oxigenasa 1/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Pulmón/metabolismo , Ratones Noqueados , Inhibidor NF-kappaB alfa/metabolismo , Norepinefrina/administración & dosificación , Oxígeno/sangre , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/terapia , Traumatismos Torácicos/terapia , Orina , Vasoconstrictores/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...